
Deep Learning for Data Science
DS 542

Lecture 15
Attention and Transformers

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

2000

A Neural Probabilistic Language Model
Bengio et al, 2000 and 2003

● Build a probabilistic language
model from NNs

● Feed forward network with
shared parameters, C, that
create embeddings

● Predicts the probability of a
word at time t, based on the
context of the last n words

● Can use shallow feed forward
or recurrent neural networks

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language Model,” Journal of Machine Learning Research, vol. 3, pp. 1137-- 1155, Feb. 2003.

Optional direct
connections 🡪

Limited to context length of n

Generating Sequences With Recurrent Neural Networks

By Graves, 2014

First use of neural networks for auto-regressive models?

● Predict next element of a sequence
● Such as next character, word, etc…

Familiar mapping from raw outputs to probabilities

Also Generated Handwriting Sequences

Training Output

(captured via smart whiteboard)

Sequence to Sequence Learning with Neural
Networks
Sutskever et al (2014)

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2014. Link

Encode
r

Decode
r

Bottleneck

Bottleneck between Encoder
and Decoder!

Use LSTMs

https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

How to avoid that bottleneck? Attention!

Motivation:

● Arbitrarily far lookback
● Temporarily focus on certain inputs,
● And adjust focus based on output so far…

Attention Preview

L’accord sur la zone économique
européenne a été signé en août
1992. <end>

The agreement on the European
Economic Area was signed in August
1992. <end>

https://jalammar.github.io/visualizing-
neural-machine-translation-mechanic
s-of-seq2seq-models-with-attention/

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Neural Machine Translation by Jointly Learning to Align and
Translate
Bahdanau, Cho & Bengio (2014-15)

● Use bi-directional LSTMs to encode
input

○ Read sequence forward and backward.

○ Save hidden states from each pass as
“annotations” of the last read input.

● Attention model
○ Combine previous hidden state and each

annotation separately.

○ Rescale attention via soft-max.

○ Context vector = attention-weighted
annotations

Add Attention

Neural Machine Translation by Jointly Learning to Align and
Translate
Bahdanau, Cho & Bengio (2014-15)

● Use bi-directional LSTMs to encode
input

○ Read sequence forward and backward.

○ Save hidden states from each pass as
“annotations” of the last read input.

● Attention model
○ Combine previous hidden state and each

annotation separately.

○ Rescale attention via soft-max.

○ Context vector = attention-weighted
annotations

Add Attention
Fixed
size

Variable
size

Neural Machine Translation by Jointly Learning to Align and
Translate
Bahdanau, Cho & Bengio (2014-15)

● Automatically “soft-search” parts of
input that influence the output

● Overcomes the bottleneck of a fixed
size hidden state between encoder and
decoder

● Significantly improved ability to
comprehend longer sequences

Add Attention

Attention is All You Need
Vaswani et al (2017)

● Removed LSTMs and didn’t use
convolutions

● Only attention mechanisms and
MLPs

● Parallelizable by removing
sequential hidden state
computation

● Outperformed all previous models

Encoder

Decoder

Remove LSTMs

Transformers applied to many NLP applications
● Translation
● Question answering
● Summarizing
● Generating new text
● Correcting spelling and grammar
● Finding entities
● Classifying bodies of text
● Changing style etc.

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

Motivation

Design neural network to encode and process text:

Motivation

Design neural network to encode and process text:

Encode word (or word parts) in some kind of D-dimensional embedding vector.

We’ll look at tokenization and embedding encoding later.

For now assume a word is a token.

Motivation

Design neural network to encode and process text:

x N
In this example, we have a D-dimensional input vector for each of the 37 words
above.

Normally we would represent punctuation, capitalization, spaces, etc. as well.

Standard fully-connected layer

Assuming D inputs and
D hidden units.

Standard fully-connected layer

Problem:

• token (word) vectors may be 512 or 1024 dimensional
• need to process large segment of text
• Hence, would require a very large number of parameters
• Can’t cope with text of different lengths

Conclusion:
• We need a model where parameters don’t increase with input length

Motivation

Design neural network to encode and process text:

The word their must “attend to” the word restaurant.

The word their must “attend to” the word restaurant.

Conclusions:

• There must be connections between the words.
• The strength of these connections will depend on the words themselves.

Motivation

Design neural network to encode and process text:

Motivation
● Need to efficiently process large strings of text
● Need to relate words across fairly long context lengths

Self-Attention addresses these problems

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

Dot-product self attention
1. Shares parameters to cope with long input passages of different lengths
2. Contains connections between word representations that depend on the

words themselves

Dot-product self attention
● Takes N inputs of size Dx1 and returns N inputs of size Dx1
● Computes N values (no ReLU)

● N outputs are weighted sums of these values

Dot-product self attention
● Takes N inputs of size Dx1 and returns N inputs of size Dx1
● Computes N values (no ReLU)

● N outputs are weighted sums of these values
Dot product name
from this expression

Dot-product self attention
● Takes N inputs of size Dx1 and returns N inputs of size Dx1
● Computes N values (no ReLU)

● N outputs are weighted sums of these values
Scalar self-attention weights that
represent how much attention the nth
token should pay to the mth token

Attention as routing

Here:

of inputs, N = 3

Dimension of each input, D = 4

We’ll show how to calculate the
self-attention weights shortly.

Attention as routing

Linear Transform

Sums to 1

Attention as routing

Attention as routing

● Compute N “queries” and N “keys” from input

● Calculate similarity and pass through softmax:

● Weights depend on the inputs themselves

Attention weights

● Compute N “queries” and N “keys” from input

● Take dot products and pass through softmax:

Attention weights

Dot product = measure of similarity

A drawback of the dot product as similarity measure is the magnitude of each
vector influences the value. More rigorous to divide by magnitudes.

Conclusions:

✔ We need a model where parameters don’t increase with input length, e.g.

✔ There must be connections between the words.
✔ The strength of these connections will depend on the words themselves.

Motivation

Design neural network to encode and process text:

Ok, we defined queries, keys and values, but
how are they used?

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

Computing Attention Weights

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computing Values and Self-Attention Outputs as Sparse Matrix
Ops

• Store N input vectors in matrix X

• Compute values, queries and keys:

• Combine self-attentions

From Input Vector to Input Matrix

Scaled Dot Product Self-Attention
● To avoid the case where a large value dominates the softmax in

● you can scale the dot product by the square root of the dimension of the query

Put it all together in matrix form

Put it all together in matrix form

Scales linearly with
sequence length, N

attention weights scales
quadratically with sequence
length, N, but independent
of length D of each input

Put it all together in matrix form

Scales linearly with
sequence length, N

Linear
&
Can be
calculated in
parallel

Non-linea
r

attention weights scales
quadratically with sequence
length, N, but independent
of length D of each input

Linear combination of
weighted inputs where
weights calculated from
nonlinear functions

Hypernetwork – 1 branch calculates weights of
other branch

Scales linearly with
sequence length, N

Linear
&
Can be
calculated in
parallel

Non-linear

Linear combination of
weighted inputs where
weights calculated from
nonlinear functions

attention weights scales
quadratically with sequence
length, N, but independent
of length D of each input

Multi-Head Self Attention

● Multiple self-attention heads are
usually applied in parallel

● “allows model to jointly attend to
info from different representation
subspaces at different positions”

● Original paper used 8 heads

● All can be executed in parallel

Equivariance to Word Order

Self-attention is equivariant to permuting word order. Just a bag of words.

But word order is important in language:

The man ate the fish

vs.

The fish ate the man

A function f[x] is equivariant to a
transformation t[] if:

Solution: Position Encoding

Idea is to somehow encode absolute or
relative position in the inputs

Encoder

Decoder

Fourier features used in neural
fields are a version of this idea.

Absolute Position encoding

Absolute Position encoding

Alternatively, could be added to each layer

Relative Position Encoding
Absolute position of a word is less important than relative position between
inputs

 The panda eats shoots and leaves
Abs Pos: 0 1 2 3 4 5
Rel Pos: -2 -1 0 1 2 3

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

Transformers

● Multi-headed Self Attention is just one
component of the transformer architecture

Encoder

Decoder

Transformers

● Multi-headed Self Attention is just one
component of the transformer architecture

● Let’s look at a transformer block (or layer)
from the encoder

Encoder

Decoder

Transformer Layer -- Complete

55
• Adds a 2-layer MLP
• Adds residual connections around multi-head

self-attentions and the parallels MLPs
• Adds LayerNorm, which normalizes across all the N

input samples

Transform Layer

Transformer Layer -- MLP

56
• Adds 2-layer MLP • Same network (same weights) operates

independently on each word
• Learn more complex representations and

expand model capacity

Linear
Dx4D

 🡪 ReLU(.) 🡪 Linear
4DxD

Transformer Layer -- LayerNorm

57
• Normalize across same layer
• Learned gain and offset

D

N

NLP Example
batch, sentence_length, embedding_dim = 20, 5, 10
embedding = torch.randn(batch, sentence_length,
embedding_dim)
layer_norm = nn.LayerNorm(embedding_dim)

Activate module
layer_norm(embedding)

https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html Calculated column-wise

https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

Transformers
● Motivation

● Dot-product self-attention

● Applying Self-Attention

● The Transformer Architecture

● Three Types of NLP Transformer Models

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

○ Encoder
○ Decoder
○ Encoder-Decoder

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

○ Encoder
○ Decoder
○ Encoder-Decoder

3 Types of Transformer Models
1. Encoder – transforms text embeddings into representations that support variety

of tasks (e.g. sentiment analysis, classification)
❖ Model Example: BERT

2. Decoder – predicts the next token to continue the input text (e.g. ChatGPT, AI
assistants)
❖ Model Example: GPT4, GPT4

3. Encoder-Decoder – used in sequence-to-sequence tasks, where one text
string is converted to another (e.g. machine translation)

Encoder Model Example: BERT (2019)
Bidirectional Encoder Representations from Transformers
● Hyperparameters

○ 30,000 token vocabulary
○ 1024-dimensional word embeddings
○ 24x transformer layers
○ 16 heads in self-attention mechanism
○ 4096 hidden units in middle of MLP

● ~340 million parameters
● Pre-trained in a self-supervised manner,
● then can be adapted to task with one additional layer and fine-tuned

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding.” arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

This is a popular model to
fine-tune for specialized tasks.

https://doi.org/10.48550/arXiv.1810.04805

Encoder Pre-Training

● A small percentage of input embedding replaced with a generic <mask>
token

● Predict missing token from output embeddings
● Added linear layer and softmax to generate probabilities over vocabulary
● Trained on BooksCorpus (800M words) and English Wikipedia (2.5B

words)

X
T

Special <cls> token
used for aggregate
sequence
representation for
classification

Encoder Fine-Tuning

● Extra layer(s) appended to convert output vectors to desired
output format

● 3rd Example: Text span prediction -- predict start and end
location of answer to a question in passage of Wikipedia,
see https://rajpurkar.github.io/SQuAD-explorer/

Sentiment
Analysis

Named Entity
Recognition (NER)

<cls> token
position

https://rajpurkar.github.io/SQuAD-explorer/

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

○ Encoder
○ Decoder
○ Encoder-Decoder

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
● One purpose: generate the next token in a sequence
● By constructing an autoregressive model

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

We saw this interface before,
but better internals now.

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder: Masked Self-Attention

● During training we want to maximize the log probability of the input text
under the autoregressive model

● We want to make sure the model doesn’t “cheat” during training by looking
ahead at the next token

● Hence we mask the self attention weights corresponding to current and
right context to negative infinity

Masked Self-Attention

70

X

X

X

Mask right context self-attention weights to zero

Masked Self-Attention

• Prompt with token string “<start> It takes great”
• Generate next token for the sequence by

• picking most likely token
• sample from the probability distribution

• alternative top-k sampling to avoid picking from the long tail
• beam search – select the most likely sentence rather than greedily pick

Decoder: Text Generation (Generative AI)

Ignore

Pr
o

m
p

t

Generated

Decoder: Text Generation (Generative AI)

Ignore

Pr
o

m
p

t

Generated

G
en

er
at

ed

• Feed the output back into input

Decoder: Text Generation (Generative AI)

Ignore

Pr
o

m
p

t
G

en
er

at
ed Generated

• Feed the output back into input

Technical Details

BERT GPT3

Model Architecture Encoder Decoder

Embedding Size 1024 12,288

Vocabulary 30K tokens

Sequence Length 2048

Heads 16 96

Layers 24 96

Q,K,V dimensions 64 128

Training set size 3.3B tokens 300B+ tokens

Parameters 340M 175B

Again, BERT is viable and available
for your projects.

Transformers
● Motivation
● Dot-product self-attention
● Applying Self-Attention
● The Transformer Architecture
● Three Types of NLP Transformer Models

○ Encoder
○ Decoder
○ Encoder-Decoder

Encoder-Decoder Model
● Used for machine translation, which is a

sequence-to-sequence task

https://jalammar.github.io/illustrated-transformer/

Decoder only continues input sequences.
Encoder-decoder produces new sequences based on input sequences.

https://jalammar.github.io/illustrated-transformer/

Encoder Decoder Model

● The transformer layer in the decoder of
the encoder-decoder model has an extra
stage

● Attends to the input of the encoder with
cross attention using Keys and Values
from the output of the encoder

● Shown here on original diagram from
“Attention is all you need” paper

Encoder

Decoder

Encoder Decoder Model
● Same view per UDL book

Cross-Attention

Keys and Values come from the last stage
of the encoder

Feedback?

