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A Neural Probabilistic Language Model

Bengio et al, 2000 and 2003

i-th output = P(w, = i|context)
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Figure 1: Neural architecture: f(i,w;_1, -+ ,Wi—ns1) = g(i,C(wi—1), -+ ,C(W;_,+1)) Where g is the

neural network and C(i) is the i-th word feature vector.

w; € V words in the vocabulary

e Build a probabilistic language
model from NNs

e Feed forward network with
shared parameters, C, that
create embeddings

e Predicts the probability of a
word at time t, based on the
context of the last n words

e Can use shallow feed forward
or recurrent neural networks

Limited to context length of n

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language Model,” Journal of Machine Learning Research, vol. 3, pp. 1137-- 1155, Feb. 2003.



Generating Sequences With Recurrent Neural Networks

By Graves, 2014
First use of neural networks for auto-regressive models?

e Predict next element of a sequence
e Such as next character, word, etc...

Familiar mapping from raw outputs to probabilities
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<revision>

<1d>40973199</1id>

<timestamp>2006-02-22T22:37:16Z</timestamp>

<contributor> .

<ip>63.86.196.111</ip>

</contributor>

<minor /> .

<comment>redire paget --&gt; captain */</comment>

<text xml:space="preserve >the ' "'Indigence Hlstnr%' "' refers to the autho
rity of any obscure albionism as being, such as in Aram Missolmus'.[http://www.b
bc.co.uk/starce/cr52.htm]
In [[1995]], Sitz-Road Straus up the inspirational radiotes portion as &quot;all
1unce&quot;tslngle &qyot;glaplng&qupt; theme charcoal] with %[Mldwestern United
State\Denmark%] in which Canary varies-destruction to launching casualties has q
uickly responded to_the krush loaded water or so it might be destroyed. Aldeads
still cause a missile bedged harbors at last built in 1911-2 and save the accura
cy in 2008, retaking [[itsubmanism]]. Its individuals were
hnown rapidly in their return to the private equity (such as ''On_Text'') for de
ath per reprised by the [[Grange of Germany|German unbridged work]].

The '''Rebellion''' (''Hyerodent'') is [[literal]], related mildl{ older than ol
d half sister, the music, and morrow been much more propellent. All those of EI;H
amas gmass |sausage traF?icking]]s were also known as [[Trip class submarinel'"s
ante'" at Serassim]]; ''Verra'' as 1865&amp;ndash;682&amp;ndash;831 is related t
o ballistic missiles. While she viewed it friend of Halla equatorial weapons of
Tuscany, in EEFrance]], from vaccine homes to &quot;individual&quot; ampnﬁ g[sl
ave;y\s aves]] (such as artistual selling of factories were renamed English habi
t twelve years.)

By the 1978 Russian [[Turkengurkist]J capital city ceased by farmers and the in
tention of navigation the ISBNs, all encoding 55Tran$ylyan1q International Organ
isation for Transition BanklnglAttlklng othersJ] it is_in the westernmost placed

ines. This type of missile calculation maintains all grgater proof was the [[
1990s]] as older adventures that never established a self-interested case. The n
ewcgmers were Prosecutors in child after the other weekend and capable function

Holding may be typicallﬁ largely banned severish from sforked warhing tools and
behave laws, allowing the private jokes, even through missile IIC control, most
notably each, but no relatively larger success, is not being reprinted and withd
rawn into forty-ordered cast and distribution.

Besides these markets (notably a son of humor).

Sometimes more or only lowed &quotesa&guot; to force a suit for http://news.bbc.
co.uk/1/sid9kcid/web/9960219.html ''[[#10:82-14]]""
&1t;blockquotedgt;

===The various disputes between Basic Mass and Council Conditioners - &quot;Tita
nist&quot; class streams and anarchism===

Internet traditions sprang east with [[Southern neighborhood systemsga are impro
ved with [[Moatbreaker]]s, bold hot missiles, its labor systems. [[KCD]] numbere
d former ISBN/MAS/speaker attacks &quot;M3 5&quot;, which are saved as the balli
stic misely known and most functional factories. Establishment begins for some
range of_ start rail years as dealing with 161 or 18,950 million [[ﬂSD»Z]] and [[
covert all_carbonate” function]]s (for example, 70»93) higher individuals and on
missiles. This might need not know against sexual [[video capita]] Elayinﬁ point
ing degrees between silo-calfed greater valous consumptions in the US... header
can be seen in [[collectivist]].

== See also ==



Also Generated Handwriting Sequences

Training Output
(captured via smart whiteboard)
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Sequence to Sequence Learning with Neural

Networks

Sutskever et al (2014) . UtsedtLSTMs in an Encoder/Decoder
® structure

A * Estimate the probability of

p(V1, e, V7 |1X1, o, X7) Where T' # T

B

MR X & * Encoder mapped sequence to a fixed
EL £ T size token (hidden state)
(0]
> >

* The hidden state may not encode all

7
the information needed by the
@ decoder
Encode Decode
r w r X Y Z <EOS>
I ] | }—-[::( 1 | |
T T T T T T Bottleneck between Encoder
and Decoder!
Bottleneck

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2014. Link


https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

How to avoid that bottleneck? Attention!

Motivation:

o Arbitrarily far lookback
o Temporarily focus on certain inputs,
o And adjust focus based on output so far...



Attention Preview

L'accord sur la zone économique
européenne a été signé en aout
1992. <end>

The agreement on the European
Economic Area was signed in August
1992. <end>

https://jalammar.qithub.io/visualizing-
neural-machine-translation-mechanic
s-of-seq2seqg-models-with-attention/
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https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Neural Machine Translation by Jointly Learning to Align and

Translate
Bahdanau, Cho & Bengio (2014-15)

e Use bi-directional LSTMs to encode
input

o Read sequence forward and backward.

o Save hidden states from each pass as
“annotations” of the last read input.

o Attention model

o Combine previous hidden state and each
annotation separately.

o Rescale attention via soft-max.

o Context vector = attention-weighted

X1 X X5 Xr annotations



Neural Machine Translation by Jointly Learning to Align and

Translate
Bahdanau, Cho & Bengio (2014-15)

e Use bi-directional LSTMs to encode

t input
t@ntion p
o Read sequence forward and backward.‘\ Fixed
o Save hidden states from each pass as size
“annotations” of the last read input.
Variable o Attention model

size

o Combine previous hidden state and each
\ annotation separately.

o Rescale attention via soft-max.

o Context vector = attention-weighted

X1 X X5 X7 annotations



Neural Machine Translation by Jointly Learning to Align and

Translate
Bahdanau, Cho & Bengio (2014-15)

o Automatically “soft-search” parts of
input that influence the output

tef)tio”

e Overcomes the bottleneck of a fixed
size hidden state between encoder and
decoder

o Significantly improved ability to
comprehend longer sequences




Attention is All You Need
Vaswani et al (2017)
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® Removed LSTMs and didn’t use
convolutions

® Only attention mechanisms and
MLPs

® Parallelizable by removing
sequential hidden state
computation

® Outperformed all previous models



Transformers applied to many NLP applications

Translation

Question answering
Summarizing

Generating new text

Correcting spelling and grammar
Finding entities

Classifying bodies of text
Changing style etc.



Transformers

Motivation

Dot-product self-attention

Applying Self-Attention

The Transformer Architecture

Three Types of NLP Transformer Models



Motivation

Design neural network to encode and process text:



Motivation

Design neural network to encode and process text:

Encode word (or word parts) in some kind of D-dimensional embedding vector.
We'll look at tokenization and embedding encoding later.

For now assume a word is a token.



Motivation

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vege-
tarian food. In the end, they just gave me two slices of bread. Their ambience was
just as good as the food and service.

D
-+ 'HNE BN NN © BHE N EEEm - - -

xN
In this example, we have a D-dimensional input vector for each of the 37 words

above.

Normally we would represent punctuation, capitalization, spaces, etc. as well.



Standard fully-connected layer

8+ Qx|

a

h =




Standard fully-connected layer

h = a3 + Qx|

Problem:

token (word) vectors may be 512 or 1024 dimensional
need to process large segment of text

Hence, would require a very large number of parameters
Can’t cope with text of different lengths

Conclusion:
* We need a model where parameters don’t increase with input length



Motivation

Design neural network to encode and process text:

oD

The word must “attend to” the word



Motivation

Design neural network to encode and process text:

The word must “attend to” the word
Conclusions:

 There must be connections between the words.
« The strength of these connections will depend on the words themselves.



Motivation

e Need to efficiently process large strings of text
e Need to relate words across fairly long context lengths

Self-Attention addresses these problems



Transformers

Motivation

Dot-product self-attention

Applying Self-Attention

The Transformer Architecture

Three Types of NLP Transformer Models



Dot-product self attention

1. Shares parameters to cope with long input passages of different lengths
2. Contains connections between word representations that depend on the
words themselves



Dot-product self attention

e Takes N inputs of size Dx1 and returns N inputs of size Dx1
e Computes N values (no RelLU)

Vi = /87; + van

e N outputs are weighted sums of these values



Dot-product self attention

e Takes N inputs of size Dx1 and returns N inputs of size Dx1
e Computes N values (no RelLU)

Vi = /67; + ﬂvxn

e N outputs are weighted sums of these values
Dot product name

sa Z mem] A/from this expression
m=1



Dot-product self attention

e Takes N inputs of size Dx1 and returns N inputs of size Dx1
e Computes N values (no RelLU)

Vi = /87; + ﬂvxn

Scalar self-attention weights that

e N outputs are weighted sums of these valueAs/ represent how much attention the n'"
N p A \ token should pay to the m* token
sa,[X1,...,XN| = |25 | Vs
m=1

al-, X, ] are non-negative and sum to
one



Attention as routing
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Attention as routing

Sumstol

O ¢
e § #ﬁggsa[xl]

Sa| X3

Inputs Values

H_/

Linear Transform

Outputs

Here:
# of inputs, N=3
Dimension of each input, D=4

We'll show how to calculate the
self-attention weights shortly.



Attention as routing




Attention as routing




Attention weights

e Compute N “queries” and N “keys” from input
dn = B, + Q¢xy
k, = B + QxXp,
e Calculate similarity and pass through softmax:
a|Xp, Xm] = softmax,, [sim[k,,q,]]

exp [sim[Kk;,qp]]

Sy exp [sim[k/, q]]

e \Weights depend on the inputs themselves



Attention weights

e Compute N “queries” and N “keys” from input
qn — ,Bq _I_ qun
kn — /Bk + Qkxn:

e Take dot products and pass through softmax:

a|Xn, Xm| = softmax,, [k%qn}

exp |k} qy|

N Zﬁ’:l exXp [kf@/qnW



Dot product = measure of similarity

x"y = |x||y|cos(6)

A A A
X X
0 0
(5] y y y
< > < >
X

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(B) close to © - Cos(B) close to -1

- Similar vectors - Orthogonal vectors - Opposite vectors

A drawback of the dot product as similarity measure is the magnitude of each
vector influences the value. More rigorous to divide by magnitudes.
xTy

Cosine Similarity: iyl cos(0)



Motivation

Design neural network to encode and process text:

Conclusions:

v We need a model where parameters don’t increase with input length, e.g.

¢ — {/Bva Q’Uwﬂq? quaka Qk}

v/ There must be connections between the words.
v/ The strength of these connections will depend on the words themselves.



Ok, we defined queries, keys and values, but
how are they used?



Transformers

Motivation

Dot-product self-attention

Applying Self-Attention

The Transformer Architecture

Three Types of NLP Transformer Models



Computing Attention Weights

L

o] alX,, Xm] = softmax,, [k%qn]
In;ﬁigh




Computing Values and Self-Attention Outputs as Sparse Matrix

a[xs, X1 |

Attention weights

5 ‘
Inputs  Values  Outputs Value weights

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.



From Input Vector to Input Matrix

* Store N input vectors in matrix X Ry

Input. X
* Compute values, queries and keys:

VIX]=8,1T +Q,X

QX] =8,1T + QX

K[X] = 3,17 + X,
Combine self-attentions

Sa[X] = V[X] - Softmax [K[X]TQ[X]} — V - Softmax|[K” Q]



Scaled Dot Product Self-Attention

e To avoid the case where a large value dominates the softmax in

Sa[X] = V - Softmax[K’ Q]

e Yyou can scale the dot product by the square root of the dimension of the query
K'Q
ViR

Sa[X] = V - Softmax [



Put it all together in matrix form

) Self-attention

D

Queries,
Q=0,1" +0,X N
N N N
Attention,
D I Softmax [K7 Q)] n

Input, X Keys, Output,
K:,Ble + .. X V - Softmax [KTQ}

Values,
V=31 + 0, X



Put it all together in matrix form

N

Self-attention # attention weights scales
guadratically with sequence
D .
length, N, but independent
T N / of length D of each input
Q=0,1" +0,X N
N N N
Attention,
- o Softmax [K7Q)] D
Input, X Keys, Output,
K=03,1T + 0, X V - Softmax [K” Q]
N
Scales linearly with N
sequence length, N -
Values,

V=317 +0,X



Put it all together in matrix form

Linear

&

Can be
calculated in
parallel

Scales linearly with
sequence length, N

N

D

QOueries

Q=06,1" + 2,X

Self-attention

Non-linea
.
N
N

v

Attention

# attention weights scales
guadratically with sequence
length, N, but independent
of length D of each input

Softmax [K7Q)]

Output,
V - Softmax [KTQ}

Linear combination of
weighted inputs where
weights calculated from
nonlinear functions



Hypernetwork — 1 branch calculates weights of
other branch

Linear

&

Can be
calculated in
parallel

Scales linearly with
sequence length, N

N

D

QOueries

Q=06,1" + 2,X

Self-attention

Non-linear
\ A\'r
N

v

Attention

# attention weights scales
guadratically with sequence
length, N, but independent
of length D of each input

Softmax [K7Q)]

Output,
V - Softmax [KTQ}

Linear combination of
weighted inputs where
weights calculated from
nonlinear functions



Multi-Head Self Attention

X

4 X Head 1\
=
Queries—l X
N
¥ J Attention a
i i
Keys Head 1 Output,
Sal[X]
N
L. p/1
\ Values 4

D

Concatenate
and transform,
Q.[Sa;1[X]; Saz[X]]

)

SA outputs are
concatenated
and combined
weighted by
Q..

o Multiple self-attention heads are
usually applied in parallel

¢ “allows model to jointly attend to
info from different representation
subspaces at different positions”

e Original paper used 8 heads

o All can be executed in parallel



A function f[x] is toa
transformation t[] if: £[t[x]] = t [fx]

Equivariance to Word Order

Self-attention is equivariant to permuting word order. Just a bag of words.

But word order is important in language:

VS.



—

Solution: Position Encoding

Encoder Feed
Forward
Add & Norm
Add & Norm Multi-Head
Feed Attention
Forward )
Nix | Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A——) AST—;

S . | \& —
Positional Positional
Encodi D ¢ i

ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

Decoder

Output
Probabilities

Add & Norm

(shifted right)

|dea is to somehow encode absolute or
relative position in the inputs

Fourier features used in neural
fields are a version of this idea.



Absolute Position encoding

O .
Add some matrix, II, to the : 7 é_
D XN input matrix: o = —
3 c =
T 9 == T
= —
I ~+ I1 Il = < 64
O
| -
Input. X D_
II can be pre-defined or learned 198
-ﬁ
0 Input, n 8

0



Absolute Position encoding

Alternatively, could be added to each layer

Sa[X] = V - Softmax[K* Q]

!

Sa[X] = (V +1I) - Softmax|(K + IT)* (Q + II)



Relative Position Encoding

Absolute position of a word is less important than relative position between

inputs
T A\
The panda eats shoots and leaves

AbsPos: 0 1 2 3 4 §
Rel Pos: -2 -1 O 1 2 3

L Each element of the attention matrix corresponds to
A an offset between query position a and key position b
Attention Learn a parameter 7, ;, for each offset and modify
Softmax [ K’ Q] Attention[a,b] in some way.
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Motivation
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Applying Self-Attention

The Transformer Architecture

Three Types of NLP Transformer Models



Transformers
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(shifted right)

® Multi-headed Self Attention is just one
component of the transformer architecture



Transformers

Decoder

Output
Probabilities

Softmax

Add & Norm

Feed
Forward

Encoder

Add & Norm

Multi-Head _
Attention
Nx

Add & Norm

Feed
Forward

NI Add & Norm
%S Add & Norm I TRsred
Multi-Head Multi-Head
Attention Attention
T ||| ==
—_— JJ \& L
Positional @_@ @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

® Multi-headed Self Attention is just one
component of the transformer architecture

® | et’s look at a transformer block (or layer)
from the encoder



Transformer Layer -- Complete

Transformer layer

_________________________________________________________________________________________

A Y

i Residual connection Residual connection |
N i E
i Multi-head LayerNorm  Parallel neural LayerNorm |
Input ! ) ' Output
i self-attention networks :

__________________________________________________________________________________________

Transform Layer

X 4+ MhSa[X]

Adds a 2-layer MLP

* Adds residual connections around multi-head
self-attentions and the parallels MLPs

Adds LayerNorm, which normalizes across all the N Xn
input samples X

slle
TT T

LayerNorm/[X]

[
X, + mlp [Xn]
LayerNorm|X],




Transformer Layer -- MLP

Transformer layer

Residual connection

Input

e Adds 2-layer MLP

Multi-head
self-attention

_________________________________________________________________________________________

—4

B—

Residual connection

LayerNorm  Parallel neural LayerNorm

networks

==l

Same network (same weights) operates
independently on each word

Learn more complex representations and
expand model capacity

Linear, ,, [J ReLU(.) [ Linear,

Output




Transformer Layer -- LayerNorm

Transformer layer

Residual connection

Multi-head

Input .
P self-attention

D —d—

LayerNorm

_é %aﬁ L

Residual connection

Parallel neural LayerNorm

Output
networks P

* Normalize across same layer
* Learned gain and offset

- - -

z — E[z]

- ,
:y v/ Var[z] + €

Calculated column-wise

# NLP Example

batch, sentence_length, embedding_dim = 20, 5, 10
embedding = torch.randn(batch, sentence_length,
embedding_dim)

layer_norm = nn.LayerNorm(embedding_dim)

# Activate module
layer_norm(embedding)

https: torch.org/docs/stable/generated/torch.nn.LayerNorm.html


https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

Transformers

o Motivation

e Dot-product self-attention

o Applying Self-Attention

e The Transformer Architecture

e Three Types of NLP Transformer Models



Transformers

Motivation

Dot-product self-attention

Applying Self-Attention

The Transformer Architecture

Three Types of NLP Transformer Models

o Encoder
o Decoder
o Encoder-Decoder



Transformers

Motivation

Dot-product self-attention

Applying Self-Attention

The Transformer Architecture

Three Types of NLP Transformer Models

o Encoder
o Decoder
o Encoder-Decoder



3 Types of Transformer Models

1. Encoder — transforms text embeddings into representations that support variety
of tasks (e.g. sentiment analysis, classification)

«* Model Example: BERT

2. Decoder — predicts the next token to continue the input text (e.g. ChatGPT, Al
assistants)

¢ Model Example: GPT4, GPT4

3. Encoder-Decoder — used in sequence-to-sequence tasks, where one text
string is converted to another (e.g. machine translation)



Encoder Model Example: BERT (2019)
Bidirectional Encoder Representations from Transformers

e Hyperparameters

o 30,000 token vocabulary

o 1024-dimensional word embeddings

o 24x transformer layers

o 16 heads in self-attention mechanism This is a popular model to

o 4096 hidden units in middle of MLP fine-tune for specialized tasks.

e ~340 million parameters
e Pre-trained in a self-supervised manner,
e then can be adapted to task with one additional layer and fine-tuned

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding.” arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.


https://doi.org/10.48550/arXiv.1810.04805

Encoder Pre-Training

Word Linear + Probability of
Special <cls> token embeddings Transformer softmax masked token
used for aggregate celss—TTTT T = = N
sequence
representation for The—{ LI 1T11IH — I
classification <mask>—{ [T 11111+ o (xK) -Gl — N
pulled—[TTTTT11] COD~ b~ =« - *
into—{ TTTTTTIH NS .
<mask>—TTTTT 1+ -~ ~C ) — I
Steilon e TTT T T - U &' U -
9 > oe o N
T -
o A iimall percentage of input embedding replaced with a generic <mask>
token

o Predict missing token from output embeddings
o Added linear layer and softmax to generate probabilities over vocabulary

. Traige)d on BooksCorpus (800M words) and English Wikipedia (2.5B
words



Encoder Fine-Tuning
a)

Word MLP + Probability of
embeddings Transformer sigmoid positive review
<ol TTTIT <cls> token
q The—[TTTTTT] e
Sent|ment soup—[ T [ [T (xK) pOSItIOﬂ
Q tasted—=IL T T T T T T
Analysis
y like—[ ITTTTT]
socks—=
b) Linear + Probability of
embeddings Transformer softmax entity type
<cls>—TTTTT1 M O M r~
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o Extra layer(s) appended to convert output vectors to desired
output format

o 3" Example: Text span prediction -- predict start and end
location of answer to a question in passage of Wikipedia,
see https://rajpurkar.qgithub.io/SQuUAD-explorer/
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Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

e One purpose: generate the next token in a sequence
e By constructing an autoregressive model

We saw this interface before,
but better internals now.

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.


https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

* One purpose: generate the next token in a sequence
* By constructing an autoregressive model

* Factors the probability of the sentence:
Pr(Learning deep learning is fun) =
Pr(Learning) X Pr(deep | learning) X
Pr(learning | Learning deep) X
Pr(is | Learning deep learning) X
Pr(fun|Learning deep learning is)

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.
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Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

e One purpose: generate the next token in a sequence
By constructing an autoregressive model

* Factors the probability of the sentence:
Pr(Learning deep learning is fun) =
Pr(Learning) X Pr(deep | learning) X
Pr(learning | Learning deep) X
Pr(is | Learning deep learning) X
Pr(fun|Learning deep learning is)

* More formally: Autoregressive model

Pr(tl, tz, e tN) = Pr(tl) H Pr(tnl tl' tz, seey tn—l)
n=2

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.
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Decoder: Masked Self-Attention

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
"""""""" ’ h

<start>—=[T T[T | O =7 1 () -Gl 1
1—TTTTTIH ~@B- ~C D~ takes
takes—{L L T T T ]+ el (xK) ~C D~ I reat
great—{ T TTTT] & i~ —~ D courage
courage—i[ T TTTTIH - -~ to
to—[ T T T T T+ - ~( D~ e
let—{TTTT T J Lot U - D I yourselt
------------ oo N
8g gz
a8 o ®
£8

e During training we want to maximize the log proba%ility of the input text
under the autoregressive model

o We want to make sure the model doesn’t “cheat” during training by looking
ahead at the next token

e Hence we mask the self attention weights corresponding to current and
right context to negative infinity



Masked Self-Attention

a)

)

o ©

wn wn
OOO00O 0000

Mask right context self-attention weights to zero



Masked Self-Attention
a)

X1
Xo—

X3—Ih
Inputs




Decoder: Text Generation (Generative Al)

Word Transformer with Linear +
embeddings masked attention softmax
ARNENE—— ~ — my

<start=—{TTTTT] ===n i -
1 1
t—{TTTTT - | || N =
takes—=] -~ | i [
1
great—TTTT T O b~ —~
1 1
—[TTTTT] (- i ~(
1 i
1 1
~ R
A J o U ~CD1

Probability of
target token

| Tt

| takes lgnore

| great

| courage

________________________________________

Prompt with token string “<start> It takes great”
Generate next token for the sequence by

picking most likely token
sample from the probability distribution
+ alternative top-k sampling to avoid picking from the long tail

snoeqe
0I9Z

JIeapIer

beam search — select the most likely sentence rather than greedily pick

)07



Decoder: Text Generation

(Generative Al)

* Feed the output back into input

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
""""""""" 2ERE By
I \ ) =]
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Decoder: Text Generation (Generative Al)

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
""""""""" LN
<start>—{ TTTT T} N =71 N ~CD -
! D | G T
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o i i i
S— 1 1 ]
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* Feed the output back into input



Technical Detalls

I GPT3

Model Architecture
Embedding Size
Vocabulary
Sequence Length

# Heads

# Layers

Q,K,V dimensions
Training set size

# Parameters

Encoder Decoder
1024 12,288
30K tokens
2048
16 96
24 96
64 128
3.3B tokens 300B+ tokens
340M 175B

Again, BERT is viable and available
for your projects.
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Encoder-Decoder Model

¢ Used for machine translation, which is a
sequence-to-sequence task

INPL
THE
L t O/ TRANSFORMER | am a student

Decoder only continues input sequences.
Encoder-decoder produces new sequences based on input sequences.

https://jalammar.github.io/illustrated-transformer/
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Encoder

Decoder

Output
Probabilities

Softmax

>
IK——=
Nx

Positional
Encoding

Add & Norm
Feed
Forward
-
Add & Norm
e Multi-Head
Feed Attention
Forward
_I S
Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A——) AST—;
o1 \_ N
® @
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder Decoder Model

e The transformer layer in the decoder of
the encoder-decoder model has an extra
stage

o Attends to the input of the encoder with
cross attention using Keys and Values
from the output of the encoder

e Shown here on original diagram from
“Attention is all you need” paper



Encoder Decoder Model

Word

a)

embeddings

Transformer block (x K)

<start>—!

D
LITTT1]

The—

SOUP —

tasted—-

like—]

socks=-!

b)

embeddings

LI

M

fany
\

Word

Transformer with masked
and cross attention (x K)

<start>—

la—-

SOUPEmsmi

avait—!

le—

golut—!

de

—!

chaussettes—i

.,

.
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N

P

Linear + Probability of
softmax target token

sreApIRR

e Same view per UDL book



Cross-Attention

Ny Ny Cross-attention
D D
Decoder Queries, Ny
_ T
Input, X4 Q_'Bql\ + QX N.
N, ) Na
Attention,
b Softmax [K” Q] b
N,
K?Pys, Output,
D K=8,17 + 0, X, V - Softmax [K” Q]
N.
Encoder
Input, X, P
Values,

v=3,17 + Q,X.

I Keys and Values come from the last stage
of the encoder



Feedback?




